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For practically uniform entry conditions, the features of the steady laminar flow 
produced by a particular small distortion of the walls of a channel or pipe are 
shown to alter fist from those of the corresponding external situation when the 
distortion is in an ‘adjustment zone ’, sited a large distance O(R@) from the inlet ; 
R (9 1) and I signify respectively a typical Reynolds number and length scale 
of the incompressible fluid motion. The planar channel flow there develops an 
extended triple-deck structure, with an unknown inviscid core motion bounded 
by two-tiered boundary layers near the walls. In  three-dimensional pipe flow, 
where a similar structure occurs, the induced secondary motion has a jet-like 
nature close to the wall. The size and position of the indentation govern the flow 
properties within this adjustment regime and both can lead to large-scale effects 
being propagated. The most substantial effects occur if an indentation, interior 
blockage or bifurcation is sited just downstream of the adjustment stage in a 
channel. In  a pipe, however, such a siting induces much less upstream influence, 
and instead the most significant long-scale disturbances are generated when the 
pipe is constricted asymmetrically over a small length. Vortex motion can then 
be provoked far beyond the constriction, the sense of rotation changing as the 
fluid moves further downstream, while upstream source-like secondary flow is 
found. 

1. Introduction 
The influence of the entrance conditions on the fluid flow downstream in a pipe 

(or channel) may be considerable in high Reynolds number motion. For only very 
far from the inlet can the attached boundary layer emanating from the leading 
edge of the tube wall be expected to ‘fill’ the tube, and hence produce fully 
developed flow even further downstream. So, in any study of high Reynolds 
number tube flow, the assumption of a fully developed velocity profile implicitly 
requires the neglect of a vast length of entrance flow and may render the study 
inapplicable in practice. Again, the entry flow alone can induce some funda- 
mentally important downstream properties, as Singh (1974) and Smith (1976a) 
show for the secondary flow in curved pipes. In  seeking to apply theoretical 
pipe-flow studies to realistic situations there arises a need, therefore, for an 
investigation of the effects that the entrance conditions may have on the ensuing 
flow downstream. In  particular, for constricted, branching or blocked tubes 
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there is a need to establish how far from the inlet a particular disturbance, placed 
at the wall or in the interior, must be before the flow features induced start to 
alter from the typical undeveloped forms. Beyond that stage, furthermore, what 
new form does the disturbed flow acquire, given that the oncoming motion is 
still not necessarily fully developed ? 

The discussion in this paper is concerned chiefly with the various effects of 
practically uniform entry conditions on the flow through an indented or branch- 
ing tube, it being supposed that the fluid is incompressible, that the flow is steady 
and laminar and that the characteristic Reynolds number R [see (1.1) below] is 
large. The work is initiated by considering indentations which are compatible 
with triple-deck theory (Stewartson & Williams 1969; Stewartson 1974; Smith 
1973). The position and scale of such an indentation which give rise to the first 
deviation from wholly undeveloped, quasi-external, characteristics are deter- 
mined by an order-of-magnitude discussion later in the introduction. There it is 
shown that, if the length 1 of the indentation is comparable with the tube width 
and it is sited in the ‘adjustment zone ’, a distance O(R*Z) from the inlet, then 
a new form of interaction takes place between the two viscous wall layers in 
a channel. This is due to the link which the inviscid core flow establishes between 
the displacements and pressures in the two layers. The structure of the con- 
stricted fluid motion in this primary adjustment zone, set out in $2  for planar 
channel flows and in $ 4  for three-dimensional pipe flows, enables the relevance 
of both the results for quasi-external flow (Smith 1973) and the study of fully 
developed flow by Smith (19763) to be reviewed by use of linearized analysis. 
In  addition the properties produced by interior blockages and by asymmetric 
constrictions in pipes prove amenable to analysis. As we11 as governing the main 
changeover from wholly undeveloped to fully developed solutions as the indenta- 
tion length is increased, however, the primary adjustment also leads to a discus- 
sion of the part played by the position of the indentation or blockage. The 
principal features of two-dimensional and three-dimensional tube flows turn out 
to be quite distinct then. The former anticipate some of the interaction properties 
of the asymmetric channel flows described by Smith (1977) when the position 
is just downstream of the adjustment stage (see $3) ,  whereas the latter introduce 
a wholly three-dimensional local interaction (see $4). In  both cases substantial 
disturbances can be propagated over lengths much greater than the actual length 
of the indentation or blockage. 

The adjustment length. We derive here, for an indentation in one or both of the 
otherwise-parallel walls of an infinitely long channel, the critical position and 
scale which account for the primary changeover from undeveloped to virtually 
fully developed characteristics in the induced planar motion, before moving on 
to discuss in $5 3 and 4 the allied problems of branching or blockages in a channel 
and the analogous situations in pipes. It is supposed that the inlet flow is practi- 
cally uniform (see $2  for a more detailed discussion), its velocity being of magni- 
tude U, and directed into the channel. So, sufficiently near the channel entrance, 
the features of the flow produced in the thin boundary layers and inviscid core 
by the introduction of small indentations in the channel walls can be analysed 
in a quasi-external manner, as if the indentations were each placed on a flat plate 
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in a uniform external stream. There is then effectively no interference between the 
two plates. Thus the Stewartson triple-deck approach, in particular, would deal 
with the nonlinear properties of the motion, including the question of separation, 
if the typical length of indentation were much greater than the thickness of the 
oncoming boundary layer but much less than the tube width, and provided the 
indentation height was much less than the boundary-layer thickness, as Smith 
(1973) has shown. Of more interest, both physically and to the present paper, i s  
the influence of an indentation of length comparable with the tube width. 
We approach that situation now by considering various positions of the indenta- 
tion. According to triple-deck theory the uniform stream is disturbed significantly 
a t  distances from the wall of the order of the indentation length. Also, if the 
theory is to remain strictly valid for the different sitings of the indentation, this 
length must be kept much greater than the boundary-layer thickness. Hence 
eventually there comes a stage, far downstream, where the individual triple 
decks around each indentation merge and fill the whole channel. Further down- 
stream we reach a stage where the boundary layers themselves start to coalesce. 
At even greater distances from the inlet a fully developed state is attained, with 
the oncoming viscous effects then filling the channel, and the studies by Smith 
(1976 b, c, 1977) of constrictions of Poiseuille flow become relevant. We contend, 
however, that the position and scale in the first stage, where the individual triple 
decks have grown so large that their maximum dimensions are comparable with 
the channel width, define perhaps the most crucial of the adjustment situations. 
We seek, therefore, a structure of the motion in which, on reaching the indenta- 
tion, the boundary layer at each channel wall subdivides essentially into two: 
an inner zone (the lower deck), of thickness of the order of the indentation height, 
and an outer zone (the main deck), comprising the majority of the boundary 
layer. The relatively fast change in displacement thus provoked leads to the 
setting-up of a potential flow outside, in the upper deck. Since this double struc- 
ture arises in both boundary layers, the potential flow, being intimately related 
to both the lower and the main decks, serves to allow an interaction between the 
flow properties near either indentation. 

Suppose this interference takes place when one of the indentations, whose 
length 1 is comparable with the channel width lb, is situated a distance O(1A) 
downstream of the entrance, with the parameter A ( %  1) to be found. Then, 
since the oncoming boundary layer is still virtually a Blasius one (see §2), its 
thickness will be in effect ZS = lA4R-4 and is assumed to be < Zb, which may be 
justified apoateriori. Suppose Is8 is theindentation height ands ( < 1)  is unknown. 
On a length scale O(Z) the streamwise velocity U , u  is then displaced by a relative 
amount O(s) in the major part of the boundary layer over the indentation. At 
distances O(1eS) from the wall, however, a nonlinear viscous interplay is antici- 
pated. Taking p U g x  (p being the fluid density and x an unknown parameter) 
to be the order of magnitude of the induced pressure, we must have 

Re2 = RX = 1/1#, 

from the balance of forces in the Navier-Stokes equations. Here 
R = UoZ/v $- 1 
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is the Reynolds number and v is the kinematic viscosity. Again, the displacement 
also promotes a small disturbance in the pressure just outside the boundary layer, 
and a potential flow is induced in the channel core. The small pressure in the core 
must be of the same order as the relative displacement of the boundary layer. 
Hence x = €8 from mass conservation. We may now determine the parameters 
6, 8, x and A and it is found that 

A = R), 6 = R-*, 8 = R-*, x = Re%. (1.2) 

(These orders also stem from the relation between R and the Reynolds number 
RB (= U,Z,/v) associated with Blasius flow, since for triple-deck theory to be 
directly applicable R = R%). 

Obviously the same arguments hold for the other indentation. A formal 
expansion procedure, based on the orders (1.2), can now be set up (9  2) to examine 
the changeover occurring when the indentations are placed a t  distances O(RQZ) 
from the channel entrance. In  fact the scalings (1.2) apply equally well to the 
primary adjustment in pipe flows, discussed in 94. In  both pipes and channels 
some care must be taken to correct the oncoming Blasius boundary layer and 
inviscid core for the secondary effects due to the Blasius displacement, especially 
since the boundary layer is growing indefinitely downstream, and this aspect is 
also considered in 992 and 4. Linearized solutions of the governing equations a t  
adjustment are presented in $93 and 4 both for the flow through constricted or 
dilated tubes and for the features induced by a blockage in a pipe or channel or 
bifurcation in a channel. 

We non-dimensionalize the problem at this stage, letting (a, v) U, be the 
velocities in the (Z, y) directions respectively, where ZZ and Zy measure distances 
along and across the channel with origin a t  the leading edge of the lower plate. 
The pressure is written as pUE(p +po) ,  where pUgpo is the inlet value. 

2. The adjustment in channels 
For convenience we take 

s = R - * < l  

to  be the fundamental parameter in our expansions of the solution near the 
indentations. The indentations therefore have their starting points at a distance 
I~-~ZZ~+O(Z), say, downstream of the entrance, where Z, - 1, and we set 
Z = c 3 Z 0  + x, where x = O( 1).  The walls have the shapes 

s2hF(x) (lower indentation), 
Y = (  b - s2hG(x) (upper indentation). (2.2) I 

Here the constant h N 1 and P( - 00) = G( - co) = 0. 
Our attention will be focused initially on the flow properties concerned with the 

lower indentation, since those for the upper wall follow by the same reasoning. 
The solution for the oncoming Blasius boundary layer and its lower-order contri- 
butions has been discussed by W’ilson (1 971) and Van Dyke (1970) and now needs 
some consideration. The nature of the core and the expanding boundary layers, 
which constitute the initial distribution for our indentation study, depends 
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vitally on the prescribed inlet conditions a t  X = 0, but only for finite distances 
from the inlet: far downstream the differences between the various entry flows 
considered by Van Dyke (1970) and Wilson (1971) decay relatively fast. If these 
conditions specify a uniform entry flow, then the solution for the lower boundary 
layer, in which y = R-4y and 7 is O( 1), develops according to 

Q* m 
u ~ f ; ( q ) +  f;(7)(ZR)'fi-32-*+ - f&(q), 7 = P/(25)* ,  (2 .3a )  

for 5 large but 4 R, and similarly in the core for 0 < y < b. Here 7, = 2-" for 
n >/ 2 andfA(r]) is the Blasius velocity, given by 

fg+fBf';3 = 0,  fB(0) = f & ( O )  = 0, fb(0O) = 1 (2 .3b )  

n--2 

and with the properties 

f*NT -- G?J6 +... for r ]  < 1, lim(r]-fB) = PB = 1.21678 ..., ( 2 . 3 ~ )  

where AB = 0.46960 .. . . The functionsf,(y) satisfy linear homogeneous equations 
with no-slip boundary conditions andf, N Amr]27fi + B, as r ]  --f 00. Here A ,  and B, 
are constants (calculated by Wilson (1971) for 2 < n < 7). Also,fBl(r]) is a readily 
calculable function with 

7+ m 5!  

fBl(0) = f b m  = 0,  f b l ( 4  = PBJ2 .  

The solution ( 2 . 3 a )  in fact becomes invalid when Z N R % 1 (as well as in a small 
leading-edge zone where X is O(I2-l)). This anticipates the merging of the two 
boundary layers which emanate from (Z, y) = ( 0 , O )  and (5, y) = (0, b )  and the 
setting up of a boundary-layer-type problem across the entire channel when 
3 is O(R). The terms in X/R in ( 2 . 3 ~ )  then follow from analysis of the flow when 
Z/R takes a small, O( 1) value. Our present position of the indentation is not as far 
downstream as this, but the terms in ( 2 . 3 ~ ~ )  still need some consideration. 
When x is O( 1) the boundary layer is described by 

Similar expressions hold for the pressure and transverse velocity, and 

Y = "-1y = (2X0)*r] N 1 

implies that the variation with respect to x is of relative order €3. An analogous 
result holds for the less artificial inlet conditions studied by Van Dyke and 
Wilson, those for an infinite cascade and for an irrotational entry flow, except 
that the terms UCn)(Y) in (2 .4)  are then absent. Hence, whatever the initial 
conditions, in effect we are considering below the extra velocities and pressures 
induced by the indentations alone. Then (2 .4 )  constitutes the solution for 
x large and negative, while v and p are found to be O(d)  and O(s) respectively 
as 5 t E-%,. 

In  the main part of the boundary layer over the lower indentation, the main 
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deck, where Y N 1, the solution consistent with the results of $ 1  and (2.1)-(2.4) 
has the expansion (cf. Stewartson 1974) 

] (2.5) 
21 = uB( Y )  + e[A(x) u&( Y )  + uB1( Y ) ]  + 0(e2), 
2, = - € Z A ' ( ~ )  uB(Y) + 0 ( 6 3 ) ,  p = ep1B + €2[pl(x, Y )  +p2B] + o(e3) 

when x N 1. Here plB = -,9B(2i20)* and pZB are constants associated with the 
oncoming boundary layer. The function A (x) is unknown but satisfies A (  - co) = 0 
from (2.4). The y-momentum equation gives the result ap,/aY = 0, so that 
p1 = P(x) ,  say, where P(x )  is a function of x to be determined. Lower-order terms 
in (2.5) are also obtainable. The displacement in (2.5), assumed non-zero, induces 
a slip velocity at Y = 0, however, and a thin viscous zone, the lower deck, is 
thereby generated. If y = e22 then, since UBl(0) = U@)(O) = 0, the velocities 
and pressure for Z N 1 acquire the forms u = eU(x ,  Z ) ,  v = e3V(z, 2) and 
p = eplB+e2(P(x) +p,,) to leading order. Here the result 8pla.Z = 0 from the 
transverse momentum equation has been anticipated, and the e2 term in u 
vanishes as x+ -a. To first order in e the governing equations in this lower 
zone are the boundary-layer equations 

au -+- av = 0, u-+ au v- au = -P'(x)+- a2u 
ax az ax az a 2 2  

(2.6a) 

subject to  the boundary conditions 

U =  V = O  on Z = h P ( x ) ,  
u N hB(2z0)-*(Z+A(x)) as Z-tm,} (2.6b) 
U w h B ( 2 ~ , ) d Z  as x+ -a. 

The conditions (2.6b) allow for no slip a t  the indentation (2.2), for the merging 
with the main deck (2.5) as Y-tO and for continuation with the oncoming 
boundary layer (2.3) with (2.4), in turn. To fix the problem for the evaluation of 
P(x)  and A @ ) ,  the flow outside the boundary layer, where y N 1, and also the 
features near the upper wall, must be examined as well. Since v1 N -A'(x),  
p 1  = P ( x )  and u1 -+ 0 as Y -t 00, the motion in the core outside the boundary layer 
is given by 

u = 1 + eoI(y, E )  + ~ ~ u 2 ( x ,  Y), v = e2&(x, ~ 1 ,  P = + e2[P2(x, 9) +p2BJ (2.7) 

for x N 1. The function ??,(y, e) ,  of order one generally, denotes the perturbations 
to the uniform stream u = 1 in the inviscid core far ahead of the indentation 
[see Wilson 1971, equations (3.30)-(3.32)]. From the Navier-Stokes equations 
it is found that this region is essentially one of potential flow and that V, satisfies 

a2%/ax2 + azv,/ag = o (2.8a) 
Laplace's equation 

for - 00 < x < co, 0 < y < b. The boundary conditions on V, at y = 0 are implied 
by matching with the solution in the main deck as Y-tco. Use of the relation 
aV,/ay = aP2/ax therefore gives 

(2.8b) 

The constraints on V, at y = b are completely analogous to (2.8b). For, as in 
(2.5) and (2.6) near the upper wall the flow splits up into two zones, one where 
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(b - y) e-l = P is O( 1 )  and the thinner lower deck, where (b - y) c2 = 2 is O( I). 
The crucial problem is then essentially identical with (2 .6 )  except for an unknown 
pressure term P(x )  and displacement d(x), say, instead of P and A ,  and the 
no-slip condition is required at z = hG(x).  Hence we may impose on the potential 
flow in the core the constraints 

K ( x ,  b )  = J’(z), aG(x, b)/ay = P’(x) .  ( 2 . 8 ~ )  

Thus the flow through the constricted channel is controlled by the solution 
( 2 . 8 ~ ~ )  to the inviscid core, together with the solutions to the lower and upper 
viscous sublayers, characterized by (2 .6a ,  b)  and its counterpart for z - I. The 
elliptic nature of the governing equation in the core means that not only is 
upstream influence introduced but also the two viscous sublayer flows are inti- 
mately related, via the four unknown functions A(x) ,  P(x),  d(x) and P ( x ) .  

The core flow ( 2 . 8 ~ - c )  may now be solved formally by applying the Fourier 
transform with respect to x: 

4) 

V,*(w, y) = / e--iwa: %(x, y) dx ,  (2 .9 )  
-4 )  

where w is the complex transform variable. This gives, from (2 .8a ) ,  the result 
that V,* is a linear combination of the functions exp ( 5 wy) with coefficients 
dependent on w alone. Application of the boundary conditions (2 .8  b, c )  then yields 
the expressions for the transforms of the pressure gradients &(x) = P’(z) and 
&(x) = P‘(x) in terms of the displacements A(x)  and d(x) : 

&*(w)  = io2[A*(w) cothwb + d * ( w )  cosechwb], (2 .10a)  

g * ( w )  = iw2[A*(o) cosechwb +A*(o) cothwb]. (2 . lOb)  

The superscript * denotes functions transformed as in (2 .9) .  
The pressure-displacement laws (2 .10a ,  b )  clearly simplify if x is large or small 

(w small or large respectively), or if b takes an extreme value. The nature of these 
simplifications, and of the dependence on ifo of the solution to (2 .6) ,  is perhaps 
more readily seen from the linearized theory presented below. 

3. Wall indentations, blockages and bifurcations : linearized solutions 
in channels 

3.1.  Wall indentations 

If there are indentations at the walls, as supposed in $ 2 ,  then for general values 
of h in (2 .2 )  the crucial problem of the interactions between the inviscid core flow 
and the double-structured boundary layers along the channel walls requires 
a numerical approach to the viscous equations (2 .6a ,  b )  and their counterparts for 
2 N 1 ,  along with the pressure-displacement laws (2 .10a ,  b) ,  and the motion is 
nonlinear. Here we shall confine our observations on constricted chahnel flows to 
the properties for small values of h, to derive the basic influence of the walls on the 
motion, and obtain linearized solutions. 

When h < 1 the lower-wall solution is expressible in the form 

u = /!&+he, P’(x) = hQ(x), v = hq A(x)  = hB(x), 
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where the parameter p = (2Z0)-*hg is O(1). Substitution into the governing 
equations (2.6a,b) and neglecting terms of order h2 eventually yields for the 
transformed variables the relation 

-&*(o) = p W ( o + i w ) *  [F*(w)+B*(w)] ,  (3.1) 

from Smith (1973). Here 6' = [- 3Ai' (O)]' = 0.8272 ... , Ai is the Airy function, 
the function (Okiw)" has a branch cut extending from k O i  to kcoi in the 
w plane and its argument lies between - nn and nn. Analogous expansions and 
solutions in the upper wall layer produce the requirement 

- @ ( w )  = ptk94(O+iw)g[G*(o) +z*(w)]. (3.2) 

Hence, with (2.10a, b )  (where &, a, A and d can be replaced by &, 8 , B  and z), 
we have sufficient equations to fix the solution. It follows that when b and p are 
O( 1) the linear equations 

(2" +Z*) [iw2 coth ( i d )  + (0 -I- iw)% @pug] = - (P* + C*) (0 + iw)+ 84/"%,1 

(B* -x*) [iw2 t h  ( @ b )  + (0 + iw)* 03pi] = - (P* - G*) (0 + iw)+ @pf. J (3.3) 

fix the two inviscid dispIacements and hence the pressure gradients from (3.1) 
and (3.2). Inversion of the transforms is difficult in general but simplifies when 
b or p takes an extremely small or large value. 

Indeed, if b % 1 the pressure-displacement laws (2.10~2, b)  possess more 
recognizable forms no matter what the value of h, since then 

&* = iw  IwI A", a* = io IwI A*, 

(provided that IwI $ b-l, i.e. 1x1 < b) .  Thus, when the walls are far enough apart, 
i.e. when the channel width greatly exceeds the indentation length, the features 
of the upper- and lower-wall flow become quite unrelated and are quasi-external 
phenomena, since (3.4) are the results of thin-wing theory. For each the study 
by Smith (1973) is pertinent. In  particular the solutions (3.3) are now those given 
by Smith's linearized treatment and substantial upstream influence is inherent 
in the motion. When b 4 1 on the other hand, we find that to fist order the 
pressure in the channel core remains constant at any downstream station. From 
(2.10~2,b) and (3.3),eveninthenonlinear case, P = P[=Al+Al]if  A = Ao+bAl 
and A = A[, + bA, to  O(b).  Also 

A0(x) = -do(.) = +[C(S) - F(x) ]  (3.5) 

provided that F ( z )  + G(z) remains order one. Effectively, then, the core suffers 
a completely uniform cross-displacement equal to the average of the wall 
displacements. This property links the solution to  that of Smith (19763), who 
solved the fully developed situation for h - 1, when (3.5) holds exactly. When 
the total distortion F + G is O(b-1) as well but the difference F - remains O( l ) ,  
the result (3.5) is modified slightly. Nevertheless we may conclude that the 
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confinement of the motion by the walls when they are relatively close together 
almost entirely suppresses the upstream infiuence and that the viscous effects 
already dominate practically the whole tube flow. A comparison between the 
solutions for an indentation at the lower wall when b < 1 and those for b & 1 may 
be made by referring to figures 5 and 7 of Smith (1976 b )  and to figure 3 of Smith 
(1973) respectively. Clearly the nature of the constricted flow field, and especially 
the upstream influence, if any, is crucially dependent upon the typical kngth of 
indentation compared with the channel width. 

We consider next, therefore, the part played by the positioning of the indenta- 
tions relative to the O(Rt1) adjustment distance. Suppose that the indentations 
are placed just upstream of the primary adjustment position, i.e. Zo < 1 or 
p % 1. Then (3.3) indicates that to first order A = -F  and L? = - G .  The double 
wall layers are consequently of little importance. The fluid there suffers a com- 
plete displacement parallel to the indentations, and from (2.10) the core behaves 
as if it  were simply an inviscid flow within the given channel. In particular, if b is 
now taken to be large as well, this core flow is virtually unaffected by the constric- 
tion except close to each of the walls, where it assumes the form of the classical, 
thin-wing, inviscid motion past a prescribed surface. When b is small, however, 
the pressure again stays constant across the core, owing to the thinning of the 
channel, and is given by P = P = - ( F  + G)/b .  The similarity between this 
result and that in (3.5) and above arises from the smallness of b. However, here 
the inviscid core dominates the flow and the viscous effects are negligible, 
whereas in (3.5) the opposite is true. When ,u B 1 the oncoming Blasius flow is 
more attached to the wall and so the viscous forces have little effect on it, leaving 
the inviscid behaviour. Conversely, when b < 1 but p is finite the core’s influence 
is diminished, simply because the streamwise length scale is much greater than 
the channel width. So then the flow becomes effectively fully developed. 

Of more interest are the flow features when the indentations are just down- 
stream of the adjustment, i.e. whenp < 1, but with b - 1, so that the constriction 
length remains comparable with the tube width. Here it is found that the fluid 
first responds considerably at a distance upstream much greater than the actual 
length of constriction, while downstream the wake effect persists over an even 
larger distance. We shall concern ourselves below only with these long-scale 
features and omit the details of the motion nearer the indents tions. In the motion 
far downstream or upstream of the constriction the major contributions to the 
solution stem from the behaviour of the transforms for 101 small. Inspection 
of (3.3) therefore suggests two principal zones of interest when p is small, namely 
[wl N ,u5 and Iw1 N pQ. The first propagates the most persistent effect in the wake 
but is found to have no upstream significance [see (3.7) below], and it is the 
second zone that is responsible for the upstream influence. The contributions 
from O(1) values of IwI are exponentially small when 1x1 takes any large value, 
according to (3.3). Setting w = p5Q1 in (3.3) we obtain, for Q, of order one, 

(3.6) 

b(0 + isZ,)* O*[F*(O) + G*(O)] 
2[2isZ,+b(O+iQ1)%O~] 

A* = i[G*(O) -P*(O)J- 

B* = B*-G*(O)+P*(O), 
- 
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so that A* is regular throughout the lower half of the R, plane. The constants 
F*(O) and G*(O) are effectively the cross-sectional areas of the indentations. 
Inversion of the transform then yields, for a distortion of the lower wall only 
(G = O ) ,  for example, 

p53%94b3 
-F*(O) - * @n exp ( - +tXl 04b3) 

32n 

0 for X ,  < 0, 

B(x) = 

0 for X ,  < 0, 

where x = P - ~ X ,  B 1. Similarly we find 

for X, > 0. Here T is the scaled skin friction (aU/aZ),=,. Upstream 7 = p and 
P’(x) = 0 when X ,  - 1, and no effect is felt. Instead the upstream influence comes 
from setting o = p?R, in (3 .3) ,  with R2 N 1 .  This produces to first order 

B* = [G*(o) - F*( o)] (0 + e+/[iba; + 2(0  + e+] , (3 .9 )  

and leaves B*(w)  with a pole in the lower half-plane at  R, = - i ~ ,  where 
K = (2384b-3)+. We are interested in this solution for negative values of p+x alone, 
since (3 .7)  and (3 .8 )  give the dominant terms for z large and positive. Inversion 
of (3 .9 )  supplies the main contribution to the upstream solution: 

A ( x )  = ( -  3/7b) F*(O) (+bO)+p+exp (KX,) for X ,  < 0 (3.10) 

for the constriction with G = 0, where x = p+Xz $- 1. Other physically interest- 
ing results for x large and negative may be worked out similarly; e.g. 

( ~ - p , P ’ ( x ) )  = ( 3 h / 7 b ) P * ( O ) p W S ( $ b ) ~ (  -3Ai(O) (&b)+,pW?)exp(KX,). (3.11) 

Graphs of these predominant upstream and downstream solutions are pre- 
sented in figure 1. Because of the long length scales involved both ahead and in 
the wake, the constriction acts merely as a point disturbance and, interestingly 
enough, the flow behaves in a manner not unlike that for a point disturbance in 
external flow (e.g. Smith 1973, figure 4). Thus the displacement A@) ,  pressure 
gradient P’(x) and skin-friction perturbation T(X) - p are singular as X ,  --f 0 + 
and proportional to XF*, X $  and XF+ respectively. Upstream the rising pressure 
causes an upward displacement in the main boundary layer and the skin friction 
falls. Far downstream the displacement is again upward and the skin friction 
returns to the value far upstream from below under the favourable pressure 
gradient. The basic physical reasons for the generation of such long-scale inter- 
actions here must be quite different from those in external flow, however, since 
the walls are comparatively close together when viewed from points where 
1x1 - p-6 or p+. The upstream interactions for p < 1 are apparently due instead 
to the actions of a small pressure gradient across the channel, within the inviscid 
core. Indeed, even though the indentations here are considered to be moved only 
just downstream of the primary adjustment zone, this link between the wall 
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FIGURE I.  (a) Schematic diagram of the core and double boundary-layer structure for an 
indented and bifurcating channel at the adjustment stage. (b)  The long-scale upstream 
and downstream linearized solutions in a constricted channel when p Q 1. Here, for X ,  < 0 ,  
PB = 7b(2/b)@'(x)/3p?WP*(O), SP = 7 b ~ ( ~ - p ) / Q h A i  (O)p%%P*(O), DISP = 7b(2/b@$ 
x A(z)/3p:l"*(O), while for XI > 0, PCJ = 1 2 8 7 ~ ~ ( 2 ) / 3 ~ p ~ ~ 8 ~ b ~ ~ * ( O ) ,  SF = 6 4 n ( ~ - p ) /  
33hAi (0)  p8&?b*P*(0), DISP = 327r~(z)/3~p6B4bS1P*(0). 

layers, maintained via the core, is surprisingly reminiscent of the large-scale 
upstream response that takes place within an asymmetric channel when the 
oncoming flow is fully developed, which is described by Smith (1977). In  either 
situation the shear stress at  one wall (y = 0, say) falls owing to the increase in 
pressure there, and so the boundary layer expands. Because in the present prob- 
lem the uniform stream has a diminished effect compared with the now much 
thicker and less attached Blasius flow, the core suffers a complete displacement 
towards the opposite wall (y = b) .  The flow across the channel associated with 
this displacement then sets up the pressure difference between the two walls, 
and the pressure at y = b becomes negative. This pressure drop therefore sustains 
the increase in shear stress at  y = b and the fall in displacement there is accen- 
tuated. Hence the exponential type of upstream behaviour develops. In  contrast, 
the behaviour far downstream is dictated by the boundary layer and the core 
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plays little part, again because of the increased influence of the Blasius layer. 
The boundary layer, having encountered the indentation, returns to its original 
Blasius state and both the displacement and pressure therefore fall. The pressure 
is effectively consta,nt across the channel (the solution being essentially that for 
b < l), as the wake disturbances are sustained over distances much greater than 
those defining the upstream influence. Hence the displacement of each boundary 
layer must be the same relative to the adjoining wall. The pressure itself is then 
directly proportional to the average boundary-layer displacement. 

Many aspects of injection and other wall conditions can be treated in a similar 
manner, but we turn now to a discussion of the influence of a disturbance placed 
in the interior of the tube. 

3.2. Bifurcations or blockages 

If a body, whether of finite length (as with a blockage, measuring instrument or 
model of a wing section) or semi-infinite (as with a simple branching of the tube), 
is fixed in the interior of the channel, its effects on the flow field may be analysed 
by our present methods if we suppose that its starting point is situated a distance 
O(R*Z) from the inlet and that its thickness is typically a fraction O(R-8) of the 
channel width Zb. For then the perturbations produced in the potential core flow 
may be assumed to be of relative order E ~ ,  consistent with the core structure. 
Also, the boundary layer induced on the body surface can be expected to have 
thickness - R-41 = &l when 1x1 is finite and so can be neglected to first order, 
provided it does not separate. A thicker body would presumably cause a gross 
change in the character of the whole channel flow (cf. Smith 1977) and a thinner 
one distorts the oncoming flow by a negligibly small amount. For definiteness 
we shall usually suppose the body to be semi-infinite and discuss mainly the 
bifurcation aspect. 

The broad structure of the solution at adjustment is unaltered in its essentials. 
Thus near either wall the oncoming boundary layer gradually evolves a two- 
tiered form as the bifurcation is approached. The lower wall layer is governed 
by (2 .6a,  b )  but with$’(%) = Oifthe channel remains straight, and similarlyfor the 
upper layer with G(x)  assumed to be zero. The thick dividing body in the inviscid 
core excites these two double-structured interactions by provoking O(e2) pressure 
and displacement distributions a t  the edges y = 0 + , b - of the two boundary 
layers. If the body is centred a distance lc (0  < c < b)  from the lower wall, we 
suppose it to be described by 

I c + s2hS(x) (upper surface) 
y = (  c - e2hT(x) (lower surface) 

(3.12) 

for x 2 0, with S(0) = T(0)  = 0 and h - 1. The core flow is therefore given by 
the expansion (2 .7)  to order e2, and so by the solution of the Laplace equation 
( 2 . 8 a )  for V,. Conditions (2.8b, c )  hold at y = 0, b, and in x > 0 

(3.13) 

Here (3.13) is the constraint for tangential flow at the body surface, the full 
no-slip condition being relaxed and implying the existence of the O(&) boundary 
layer adjoining the surface (3.12).  

&(z, c + ) = hS’(x), &(x, c - ) = - hT’(z). 
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For a semi-in6nite body or bifurcation the solution for K(x ,  y) may be obtained 
in principle by applying the Fourier transform (2.9) and using a Wiener-Hopf 
technique (Jones 1952 ; Noble 1958). The transformed Laplace equation with 
the boundary conditions (2.86, c)  at the walls gives Yg in terms of the pressures 
and displacements. At y = c the function &(x, y) is discontinuous in x > 0 but, 
together with its lirst derivative, is assumed continuous for x < 0. Accordingly 
we find, on applying (3.13), 

i~h8T .  ( w )  + h/3$ ( w )  = - iP*(w)  sh w(b - C) + id*(@) ch w(b - c), ) (3.14) - iwhT? ( w )  + h/9$ (0) = iP*(w) sh wc - iwA * ( w )  ch WC. 

Here the subscripts & signify functions of w that are regular in the upper and 
lower half-planes respectively, and hb(x) is the unknown transverse velocity 
at  y = c in x < 0. Also, if we define hy(x) = aG/ay(x, c - 0) -a&/&&, c + 0) ,  then 

h ~ E ( w )  = i d A * ( ~ ) s h ~ ( b - ~ ) - i i ~ P * ( ~ )  chw(b-c) 
-iw2A*(w) shwc+iwP*(w) chwc. (3.15) 

I n  the general situation where the thickness factor h, the relative tube widths 
b and c and the position factor p are O( l), the two viscous wall layers represented 
by ( 2 . 6 ~ ~ ~  b) and its counterpart for f l =  O(l),  with P = G = 0, supply two non- 
linear relations between the unknown pressures and displacements. So in 
principle with (3.14) and (3.15) we have sufficient equations to fix rT. and /3$. 
The elucidation of the nonlinear behaviour requires recourse to a numerical 
approach. Since the boundary-layer equations are involved there is the prospect 
of separation being induced in one or both of the outer wall layers by the insertion 
of the dividing wall or body in the inviscid interior, even when this interior 
blockage is of very small thickness. If h < 1, however, the two wall interactions 
become comparatively weak and progress can be made analytically. Expansion 
of the two viscous solutions along the lines of $3.1 produces the two extra 
pressuredisplacement relations (3.1) and (3.2) with P = a = 0, in which the 
overbars denote functions divided by h. Hence, using (3.14) and (3.15) we obtain 

1 - ip-* (7) 'th wc 

0 o + i w  Q 
th  wc - ip-* ( e) (fit - ioTE) Y*(w) - 

. o + i w Q  
1 - i p 4  (T) thw(b-c) 

+ (,?)$ ( B $ + i w m  (3.16) 
thw(b-c)-ip-Q - 

for the determination of the functions rE(w) and /3$(w) by means of the Wiener- 
Hopf factorization technique. Interest is centred now on some of the limiting 
forms of the solution. 

Letting c and b-tco and using superposition of solutions, we may deal yith 
a finite body and retrieve the results of thin-wing theory (see, for example, 
Thwaites 1960; Mikhlin 1964). Again, for a bite blockage, the limits c - t  0 and 
b --f co (in that order) give rise to a situation similar to that of Brown & Stewartson 
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(1970), who performed the necessary factorization of (3.16). For a bifurcating 
channel, on the other hand, the length scde Z [see (1. l)] is so far arbitrary. To fix 
it in general we must ensure that either c or b remains finite. Hence the above 
double limit may be inappropriate as far as a global solution is concerned. With 
that proviso, meaningful results are still obtainable in some formal limiting cases 
and as in Q 3.1. perhaps the most interesting occurs when p is small, implying that 
the bifurcation starts just downstream of the adjustment stage. We may antici- 
pate that here again the overriding effect downstream lasts a distance x - p-6, 
whereas the upstream influence effectively starts where 1x1 ~ p 4 ,  and this 
difference in length scales requires some deliberation. The wake effect follows 
from writing w = p6Q1 in (3.16). This gives to first order 

iQ,S21( 0) iQ,T?(O) -- - K(Q1)PT + 
QIC - i ( O + i Q ,  -s) 4 ,  (3.17) 

Y: 
p5Q1 

where K(Q,) = K-(Q,) = 

Examination of y (x )  for X, -g 1 shows that /?$ = 0 and so, as expected, no up- 
stream disturbances are generated on this scale. In particular (3.17) gives the 
pressure at the upper wall as 

- 
for X ,  > 0 (and p =  0 for X, c 0). To uncover the major upstream response, 
which occurs on the p+ length scale, for convenience we set c = +b - 1 and 
consider a bifurcating wall that is wedge-like at  its tip. Specifically we suppose 
that (S - 2') (x) = 6 x  exp ( - Cz), where p-2n6 and p-"C are order-one constants 
and 4 c n < y, so that (3.18) still holds since the effective length of the blockage 
is o(p-5Z). With 101 < 1, (3.16) can be rewritten as 

~?(w) /wK- (w)  - iO(X - T)F (W + iK,&) = PT(W)/K+(O),  (3.19) 

where 

K+(@) = (0 +i~p+)-l. (3.20 b)  

We extend the region of regularity of the + functions here to Im w > - i ~ p 6 ,  
which may be justified aposteriori. So both sides of (3.19) are entire in the strip 
0 > I m o  > -i~p+. The order of the singularity at the origin (x = 0 + )  is mini- 
mized if the left-hand side is also required to be bounded as 1 0 1  -too, to avoid 
a catastrophic rise in the velocity near the blockage by ensuring that y (x )  is 
integrable at x = 0 + . Hence by analytic continuation both sides of (3.19) are 
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FIGURE 2. The long-scale upstream and wake pressure distribution P induced at the upper 
wall by e bifurcation of the channel for p < 1 when h is small. 

equal to a constant, B say, and moreover B = i6. Upon inversion (3.19) now 
gives 

(3.21) 
[ 6 / ( t  - C)2 +&/t(t +K,u+)] t4(4 + b2t2) dt 

b2 + 2bP-8e-w + 4p+e+fi 

(the integral to be interpreted as a principal value), which is integrable a t  x = 0 
since = i6. Equation (3.21) may be used to give the upper-wall pressure, and 
for x > 0 and O ( P - ~ ) ,  the result agrees with (3.18). For x < 0 and O ( p b )  we have 
in addition 

P(x,) = - ~ ( o / K ) +  exp ( K ~ + z ) ,  (3.22) 

to first order in p. Hence if, say, the interior wall is thicker on its upper side, so 
that S(x)  2 T ( x )  2 0, then the pressure gradient driving the flow in the viscous 
wall layer far upstream of the branching is favourable. Far downstream it be- 
comes adverse, however. The long-scale pressure gradient is drawn in figure 2. 

A symmetric bifurcation, with c = Qb and S(x)  = T(x) ,  is easier to analyse 
since /3(x) and y (x )  are identically zero. The pressure transform is 

- 

- 
P*(w) = - i w T i ( w )  /[ish f;) + ( T ) ' p - t c h  E)]. (3.23) 

The limits b -+ 0, p -+ 0 and p -+ 00 are then quite straightforward, with little 
upstream influence generated owing to the symmetry. The limit b + m, on the 
other hand, yields exactly the same result for the pressure as if the blockage 
( T ( x ) )  of the flow were placed a t  the walI. So Smith's (1973) work becomes directly 
applicable, suggesting (see his figure 3) that the two boundary layers expand 
upstream under the adverse induced pressure gradient. 

4. The adjustment in pipe flows 
The underlying arguments governing the changeover stage may be modified 

to undeveloped symmetric or asymmetric flow through a semi-infinite pipe. The 
pipe is supposed to be straight and circular ahead of the constriction or blockage. 

46-2 
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During the constriction or blockage, the flow for h i t e  values of x becomes 
three-tiered, comprising an unknown inviscid potentid core and a double- 
structured boundmy layer adjoining the pipe wall r = b. Here (ZZ,Zr,q5) are 
cylindrical polar co-ordinates, and the relevant orders of magnitude are again 
found to be (1.2). The notation is essentially the same as for the two-dimensional 
flow except that bl is now the radius of the pipe and U', (v, w) are the radial and 
azimuthal fluid velocities respectively. 

In, the main part of the boundary layer, then, the solution in the adjustment 
stage is written as 

for Y of order unity, x denoting axial distance, effectively as in Q 2, and r = b - E Y. 
Also, UBl( Y) and the constants plB and pZB are the corrections to the oncoming 
boundary-layer flow described by an axisymmetric analogue of (2.3) and (2.4). 
The Navier-Stokes equations simplify under (4.1) to give the solutions 

aD lapl 
PI = PI@, $), w1 = D(x, $)/UB( Y), where - = - -- ax b a$ '\ (4.2) 

from the r,  4 and 5 momentum equations and the continuity equation respec- 
tively. Here the functions D, A and p1 are independent of Y and are to be deter- 
mined, but D( - a,$) = 0 since far upstream of the constriction or blockage the 
flow is axisymmetric. The order of magnitude of w in (4.1) stems from the require- 
ment that the solution here should match with the thinner slip layer near the 
wall and with the inviscid core. Hence the secondary flow (v, w) generally has 
a two-dimensional character in this main deck, while the continuity equation is 
essentially a balance between the streamwise and radial mass flows only. It is 
anticipated that the unknown function D(x, q5), as well as A(x, q5) and pl(x, $), 
will be non-zero during the constriction or blockage. Consequently, when the 
wall is approached, not only does the streamwise displacement become com- 
parable with the ancoming Blasius velocity, as in planar flow ( $ 2 ) ,  but also the 
swirl velocity w is singular. 

In  the O(e2) viscous sublayer, therefore, defined by T = b - e 2 2  with 2 N 1, 
the solution is expected to be of the form 

The scaling for w in (4.3) is chosen to provide a significant contribution to the 
mass-flow balance and hence to the inertial forces, a requirement sui3cient to 
fix the order of magnitude in (4.1). Consequently the secondary flow is effectively 
a one-dimensional motion, in the azimuthal direction only, near the wall and is 
jet-like since the swirl w is muchgreater here than in the main part of the boundary 
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layer. Substituting in the Navier-Stokes equations we obtain to first order in 6 

the three-dimensional boundary-layer equations 

Here 

au av aw 
ax az a+ -+-+- = 0, 

( 4 . 4 a )  

(4 .4b)  

from the radial momentum equation. The boundary conditions for (4 .4~4 ,  b )  are 
those of no slip at the wall, which is supposed to have the asymmetric shape 
r = b - s2hP(x, +), with h - 1, and of matching with the oncoming axisymmetric 
boundary layer upstream and with the main deck away from the wall. Thus 

U = V = W =  0 at Z = hF(x,$), 

U - p Z ,  V+O, W+O as x - f - c o ,  

( 4 . 4 4  

( 4 . 4 4  

The third distinct flow region is the inviscid core, 0 < 

Z+m. (4 .4e )  

r .c b, in which 

u = 1 + sOl(r, s) + e2u2, (v, w) = s2(%, u*), p = qIB + G(P, +p2B), 

since ‘u and w remain finite on entering the core from the main boundary layer. 
Here o1(r ,  s), plB andpzB again represent contributions from the boundary-layer 
displacement ahead of the adjustment zone, analogous to (2 .7) .  The motion in 
the core is virtually a potential one again and we have to leading order 

a(u2, v,, K ) / a x  = - vp. 
Then, from conservation of mass, the pressure perturbation P2(x, r, 9) satisfies 
Laplace’s equation 

(aZIat-2 + r-1 a/ar + r-2 a z / a p  + a 2 1 a X 2 )  p2 = 0. ( 4 . 5 a )  

The boundary conditions on Pz here require that the pressure should be con- 
tinuous with its value in the double boundary layer at the edge of the core, and 
that the radial i d u x  -V, there should be given by the msin-deck value of ‘ul 
of (4 .2 )  for Y +m. Hence 

P2 = b2P(x, +), aP2/ar = - a2A(X, +)/ax2 at r = b, (4.5 b )  

from (4 .4b )  and (4 .2 ) .  Continuity of the azimuthal velocity from the core to the 
main boundary layer is then assured. Further, if no rigid body is present on the 
pipe =is a condition of finite pressure must be imposed at r = 0. But when a thin 
symmetric blockage is sited along the axis the inviscid flow constraint of tan- 
gential flow there requires 

(4 .5c )  
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if the surface of the blockage is prescribed by r = eS(x).  During the following 
analysis we shall assume the absence of such blockage, however. 

For h of order one, (4.2), (4.4) and (4.5) describe the nonlinear flow through 
the constricted pipe and necessitate a numerical treatment. Linearized solutions 
are valid if we now take h -g 1, however. Then the flows in the viscous sublayer 
and inviscid core are expressible in the form U = ,uZ + h g ,  ( V ,  W ,  P ,  A ,  D, P2) 
= h( 7, P ,  A ,  D ,  P2) with corrections of order h2. Substituting into the’ 
governing equations ( 4 . 4 ~ )  and neglecting terms O(h2), we have then the linear 

_ _ _ -  

equations 
a 0  a7 aV -+-+- = 0, ax az a+ ( 4 . 6 ~ )  

(4.6b) 

(4 .6~)  

The boundary conditions become, under the same linearization procedure, 
- u = -pP( x,+), 7 = W== o at z = 0, (4.7u) 

U,V,W-+O as x+--co. (4.7c) 

U - - + p 2 ( ~ , + ) ,  P - -pZi?J/az, W N D/bpZ as Z-+CO, (4.7b) 
_ - -  

When the Fourier transform (2.9) is applied, (4 .6~)  may first be solved for V* in 
terms of the unknown function B*(w, +), yielding 

W* = -p-*(O+iw)+B*(w,+)_Lp(t) b-1, (4.8) 

where 9 ( t )  = - 8 x 3) sin (it3 + t t  - Q ~ T )  dt ,  t = [p( 0 + io)]+ Z 
/Om 

and the wall condition on w is satisfied. This solution is then substituted into 
the Z derivative of the 5 momentum equation (4.6b), with (4 .6~)  serving to 
eliminate V .  Upon integration we have 

aB* 
at a+ 
-- - B(w, +) Ai ( t )  +p-f (0 + io)* - &(t) b-l, 
aU* 

(4.9) 

where A ( t )  = 9 ’ ( t )  + Ai ( t ) / 3  Ai2 (0). 

The function S ( w , + )  is determined in terms of the unknowns H* and B* by 
setting 2 = 0 in (4.6b): 

B(w, 4) Ai’ (0)  [p(O + iw)]3 = iwb2P*(w, 4) + - 1 Ai(0 2(t) dc. (4.10) 

Integration of (4.9) with respect to 2 from 0 to 00 and use of the wall condition 
( 4 . 7 ~ )  now yields the relation 

aB*la+ m 

W O ) b  0 
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where i&* = - b aIi*/aq5 (4.12) 

from (4.2). The k a l  requirement fixing, with (4.10)-(4.12), the solution for 
A*, P*, D* and 2 comes from the potential core flow. To proceed further we 
assume that the indentation shape P(x,q5) is expressible as a Fourier cosine 
series. So we need only consider the case where P has the eingle component 

P(x, q5) = G ( x )  cosmq5, 

G(x)  is a given function of x and m is a non-negative integer. The linearized flow 
may now be Fourier analysed, according to 

) (4.13) 
P(x, 9) = ~ ( x )  cosm4, D(x, 4) = Z(x) sinm4, 
A(x,  $) = ~ ( x )  cos mg, P,(x,  r, 8) = p2(x, r )  cos m4, 

and, combining (4.10)-(4.12), we obtain on equating coefficients of cosmq5 

-r)*(w) [(O+iw))8-~b2-m2D,/(O+iw)5] = ,d[ l i*(w) +a*(@)]. (4.14) 

Here the constants 

D ,  = jOm A(f)dE+27rC1/3* = 1.289 ... , C, = -/omAi([)9(E)dE = 0.112 ... . 
The transform of the core equation ( 4 . 5 ~ )  now gives the following solution for 

flow without an interior blockage: p: = b2F*(w) I,(ur)/I,(wb), where &(z) is the 
modified Bessel function of the first kind and mth order. The w-dependent coeffi- 
cient is determined from the boundary condition on pressure at r = b. The radial 
pressure gradient at r = b thenrelates p* to a* via the boundary condition (4.5 b) ,  
which implies 

(4.15) 

Thus, in conclusion, (4.14) and (4.15) determine the solution for Z*(w) and p*(o),  
while Z*(w)  follows from a* = bmp*/iw. 

The inversion of (4.14) and (4.15) is complicated in the general case, and it is 
more illuminating to study the various effects of the relative pipe radius b and the 
positioning factor p. Two relatively simple results present themselves im- 
mediately. First, the general axisymmetric case m = 0 gives 

(4.16) 
- G* ( W )  k2 I;(&) b2P* 

F*(w) = A*@) = 
[(0 +io))/p584 + I;(wb)/wIo(wb)]’ @IO(@b) 

and so for b 1 we retrieve the external thin-wing (and quasi-two-dimensional) 
law between the pressure and streamwise displacement as in (3.4). Thus there 
is a merging with Smith’s (1973) work on planar external flow. When b 1 an 
analysis similar to  that in (4.17)-(4.21) below shows a wake effect -persisting 
over a large distance (x N b-3) but only a small upstream response (for x N b) .  
Second, if p >> 1 the inviscid form, with the displacement fixed as Z = - G and 
the pressure governed by straightforward linear inviscid theory, follows in 
a similar vein to Q 3, provided xis not small. Here, with the indentation upstream 
of the adjustment zone, the boundary layer is still sufficiently thin and ‘attached’ 
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to the wall that viscous forces are insignificant and the major effects are those 
of a disturbance placed in a uniform stream. Very near the indentation, however 
(when x - p d ) ,  the work leading to (4.22)1(4.24) below becomes relevant. We 
now move on to consider the flow properties (i) whenp or b issmall and (ii) when b 
is large, for an asymmetric disturbance. 

(i) If p is small then, in contrast to the channel flow situations beyond adjust- 
ment ($3), large-scale upstream influence is virtually non-existent, for any far 
solution is then dominated by the term in D,in (4.14), which initiates only a large 
wake effect as we now show. When X ,  = psx is of order unity (4.14) and (4.15) give 

- p1OG*(0) (0 +iQl)* 
'* = Dlm2/iQ, - (0 + iQ,)* bm/Q! 

for X ,  > 0. But p = 0 for X, < 0, and indeed no mechanism for substantial 
upstream propagation seems evident. Rather, because of the enhanced influence 
of the containing walls the upstream response when p is small is confined to the 
neighbourhood of the constriction, where IwI is O(1) and (4.14) becomes 

pG*(w) (O+piw)f 
D, m2/iw - b2iw/84 * 

jj*(O) = 

Taking the example of a point disturbance for convenience, we then have that 
for x positive andfinite ~ 

p ( x )  = p*G*(O)A*- e* [ ae-aX-- 34 lo- (e-Gz@ - 
b2 2n 62-  1 ds] 

(4.18) 

since poles exist in the upper and lower half-planes at  w = %iA,  where 
h = D*rnB#b-l = mb-l. When x is O( 1) and negative the pole in Im o < 0 gives 

p(x )  = &&G*(O) A*&'*/b2eh. (4.19) 

Hence downstream the local solution (4.18) merges with the far-wake solution 
(4.17) as X,+O+, and there are two main scales for this flow (figure 3). One 
is close to the indentation, where the pressure rises upstream [in (4.19)], also 
rises immediately downstream [in (4. IS)] but eventually decreases. The other 
scale describes the far wake, where the pressure continues to drop [in (4.17)] but 
the motion changes its basic character. For, whereas the local flow is controlled 
by the axial and azimuthal pressure forces, with the displacement of little im- 
portance, in the far wake the displacement of the core due to the boundary layer 
dictates the flow features along with the azimuthal pressure gradient. We find 
also that in the far wake 

x,~~b~~~+f~]sinmq5/Ai(O), - 3(pbDlm)2~4sinmq5, 3(pbD,m)2$4cosm#) (4.20) 1 
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Ax 

FIGURE 3. Linearized solutions, when p Q 1 ,  for the predominant three-dimensional %ow 
upstream and downstream of an asymmetric constriction [see above (4.13)] in a pipe. Here 
PR, SF, ASF, ASV and RI stand for the scaled pressure, axial skin-friotion perturbation, 
azimuthal skin friction, azimuthal slip velocity and radial idow,  given by 

2 p / , ~ * e + ~ Q a * ( o ) ,  z ~ Q ( 7 - p )  by3hma,~+a*(o) { ~ i  (0) - CJ C O S ~ # ,  

6Ai (0) 74 ba/hmp%&9k2*(0) sinm$, 2A#bZ/mp%?k7*(0) and 2bAkf(x)/mp*e8G*(0) 

respectively for x < 0. In XI > 0, 

PR = 2nD~m10b-8Ti/33p16G*(0), SB' = 2~b-4m4DD:Ci1(7-~)/3~p8a*(0) hcosmq5, 

ASF = 2n3)Ai (0)b-7msD,Wr~/,u1sG*(O)hsinm~, ASV = 2nb-6m6D~SE/3)p10B*(0) 
and 

RI = 2n( b-l mDJ6 3 ' (~ ) /3*p~~G*(O) .  

for XI of order one and positive. Here T~ is the effective azimuthal shear stress 
(81V/8Z)z-o. In  2 < 0, on the other hand, 

p#bsinm#, -p*bcosm# eh (4.21) 

when 1.1 is fbite. The solutions in these local upstream and far downstream zones 
are presented graphically in figure 3 and their physical interpretations appear to 
be as follows. Locally, ahead of the constriction the pressure in line with the 
constriction peak (# = 0) rises and produces the characteristic two-dimensional 
effect (cf. Smith 1973) of a fall in the streamwise skin friction T,  unaided by the 
increasing axial displacement -A@,  0) (see below). This causes the fluid just 
outside the viscous sublayer to be expelled outwards azimuthally (D(z,  0) > 0) 
as from a source. Fluid within the viscous sublayer jet is also driven away from the 
peak azimuthally by the adverse streamwise pressure gradient and the azimuthal 
outflow. Far downstream, however, the pressure in line with the peak is positive 

1 
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FIGURE 4. Sketch of the secondary pipe-flow response in the boundary layer immediately 
ahead of and far beyond the constriction P = G cos rnq5 when p 1. 

but decreasing, so that the axial skin friction rises towards is value far upstream 
and induces an azimuthal inflow, towards the peak, at  the edge of the sublayer. 
The azimuthal shear stress is positive near the constriction peak however and so 
there is outflow near the wall. Thus in the far wake the secondary flow throughout 
the two-tiered boundary layer, between two consecutive troughs of the indenta- 
tion, consists of a pair of vortices symmetrically disposed on either side of the 
constriction peak but rotating in opposite senses. Figure 4 gives a sketch of the 
local upstream and far downstream secondary flow patterns. 

The basic reasons for the initiation of the large-scale disturbances upstream 
in the above pipe flow are the balancing of the axial and azimuthal pressure 
gradients and the diminished influence of the core flow. Since the oncoming 
boundary layer is thicker and much less attached when p is small, the fluid near 
the wall is affected more than that in the interior and so the core suffers practically 
no displacement. Accordingly, when the peak axial pressure gradient rises, 
inducing a fall in the peak axial shear stress 7, the fluid in the viscous sublayer 
must (in the absence of any core displacement) tend to swirl away from the peak. 
The azimuthal shear stress 7$ therefore rises and the associated azimuthal 
pressure gradient must fall. The swirling then tends to enhance the increase in the 
axial shear in a trough and the whole process is reinforced. Conversely, far 
downstream the axial pressure gradient decays faster than the azimuthal 
gradient and when x is as large as O(P-~) the dominant azimuthal pressure force 
itself becomes so weak that the minor core displacement at  last plays a deciding 
role. This displacement is then linked to the pressure force by the parabolic law 
p = -G"(x)/rnb, which is characteristic of a comparatively thin tube. (The law 
arises from the radial convection of momentum which is induced in the displaced 
core and with which the radial pressure gradient must balance.) Thus the positive 
pressure downstream produces a, decreasing displacement (Z > 0) and there is 
entrainment of fluid into the viscous sublayer. However, the axial pressure 
gradient is negative, causing the peak axial shear stress T to increase, and the 
overall movement of fluid radially towards the peak results in a swirl away from 
the peak near the wall. Hence the vortex-like nature of figure 4 is established. 
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If b is small a similar phenomenon appears. Upstream the characteristic length 
scale is that associated with the pipe width and so is small (x = O(b))  but down- 
stream it is large (x = O(b-s)).  The balancing of the pressure forces and the core 
displacement in each regime is then exactly as for the case p < 1. 

(ii) The second form of interaction of most interest is due to the effects of 
relative enlargement of the pipe, when b B 1 and the core is virtually unaffected 
save close to the pipe walls. A three-dimensional extension of Stewartson's (1974) 
triple-deck theory holds here, the pressuredisplacement law being that of 
linearized inviscid theory; 

S*(U) = I u ~ u - ~ ~ * ( u )  b2, (4.22) 

to first order provided that 1x1 < b. The most persistent interactions in fact 
take place on a length scale comparable with the pipe's radius b, i.e. large relative 
to the indentation length, so that again there are two characteristic scales. We 
consider here only the features local to the indentation (1x1 < b) ,  which are of 
a character quite different from those where the pipe width and indentation 
length are comparable. These effects are governed by the properties of the 
transforms when w is finite, in which case (4.14) becomes 

(4.23) 

Despite the asymmetry the solutions for the pressure, axial skin friction r and 
displacement i% are effectively those given in Smith's (1973) planar flow study. 
Those for a and T$ are 

(nb/mp%BG*(O))a = f ( O ,  0,O) (z < 0) or - j (  - 4  x 34,0,1) (x > 0), (4.24) 

and again we take G(z) to be a point disturbance. Figure 6 gives the solution 
curves for the upstream and downstream flows here. In both the present limiting 
situation and that studied in (4.17)-(4.21), the role of the indentation as a point 
disturbance means that the solutions are singular just aft of the indentation (and 
possibly just upstream) when viewed on the predominant long length scale and 
that the flow properties local to the indentation are left to a smaller-scale analysis. 
We note that the inverse-square behaviour of the pressure in (4.23) as 1x1 +co is 
consistent with the dipole-like nature (see Smith 1973) of the quasi-external 
motion for 1x1 9 1, for there the flow suffers a simple displacement (Z = - C) and 
the pressure is specified by thin-wing theory. 

I n  the present case of a comparatively wide tube the f a r  wake (z large and 
positive) has properties that are qualitatively almost the same as those for a finite 
tube beyond the adjustment stage (p < 1, figures 3 and 4). Vortices rotating 
in the same sense as in figure 4 are again provoked throughout the two-tiered 
boundary layer. In  the majority of the boundary layer fluid is drawn from the 
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FIUURE 5. Graphs of the linearizedpipe-flow interaction ahead of and beyond the asymmetric 
indentation P = Gcosmq5 when b 

SF = 2np-a0-*(7-p)/3hAi (0)  G*(O) cosmq5, 

1. Here PR = b7rp-@-a(G*(0))-1j.j, 

ASF = 6 b 2 ~ , d A i  (0) t'-h+/hmCt*(O) sinm$, 

ASV = bnp-&?/M3U*(O) md RI = 7rp-%i'(z)/t'*B*(O). 

core above a peak and expelled above a trough. The vortex motion here is again 
generated by the overall movement radially, towards the wall, of the fluid in 
line with the peak, since the boundary layer, having been displaced from the wall, 
must now retrieve the original Blasius form. The combined effect of the radial 
inflow and decreasing axial stress T is therefore the azimuthal swirl, away from 
the peak, which produces the vortex behaviour. Although the pressure response 
is now different from that when p is small, because its relation to the displacement 
is quasi-external, it plays little part in the final vortex structure. The displacement 
appears to be the dominant influence in the far wake. Likewise, upstream of the 
indentation the flow response is in some respects similar to that occurring when 



Bifurcating, blocked or constricted tubes 733 
b-r  

t 

1 n/m -nlm n/m -n /m nlm 

Upstream Locally downstream Far downstream 

FIGURE 6. Sketch of the secondary flow induced in the boundary layer upstream and 
downstream of the asymmetric constriction P = Gcosmq5 in a pipe if b $- 1. 

p < 1, but now the core displacement exerts a substantial influence. The presence 
of the indentation is anticipated throughout the boundary layer by a displace- 
ment radially from the wall along the peak line, accompanied by a rise in the 
pressure and a fall in the axial stress T there. The associated displacement of the 
core then maintains the peak pressure rise and provokes the azimuthal slip 
velocity towards a trough. The outward swirl in the viscous layer produced by 
this slip is sustained by the relatively small azimuthal pressure gradient and so 
the source-like behaviour of the secondary flow upstream shown in figure 6 is 
encountered. Downstream, however, the azimuthal stress T# and slip do change 
sign, so that within the viscous sublayer the induced perturbations in the near 
wake of the constriction are almost totally the reverse of those in the far wake. 
The boundary-layer displacement must fall after the indentation and so there 
is infiow at the edge of the viscous layer. On the other hand, having encircled the 
obstacle the fluid has to move behind the obstacle, towards the peak line, and 
does so mostly in the slower flow region near the wall (where the axial skin 
friction T has been diminished by the presence of the indentation and the boundary 
layer is less attached). The azimuthal concentration of fluid towards the peak 
then forces a radial movement away from the wall. That, combined with the 
radial inflow at the edge of the viscous layer, leads to an azimuthal slip away from 
the peak line. Hence a vortex is formed (figure 6 ) ,  within the viscous layer alone, 
between a peak and a trough and rotates in the direction opposite to that of the 
vortex formed far downstream. 

The above approach has also been used to investigate the properties of flow 
past an obstacle placed in the interior of the pipe, as in the planar oase of $3.2 .  
For the symmetric flow specified by ( 4 . 5 ~ )  we find that when p is small, for 
example, there is a strong downstream influence on a length scale O(Z,U-~) but 
very little upstream influence. An asymmetric blockage is more cumbersome to 
deal with but large upstream and/or wake effects of the types studied in (4.17)- 
(4 .24)  are most likely to be present. 
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5. Further discussion 
It is felt that the linearized solutions derived above provide enough informa- 

tion to allow some confidence in the proposed structure of the motion in the 
primary adjustment stage, defined by (I .2). They also give qualitative insight 
into the influence that the entry flow can exert on a constricted or blocked tube 
flow, whether the constriction or blockage occurs quite near the inlet or far 
downstream. Certain of the aspects of this entry-flow influence in indented 
channels or pipes are not unexpected. For b % 1, for example, the direct link with 
the external flow features given by Smith (1973) was to be anticipated at the 
outset. However, even the properties of the motions when b < 1 are perhaps 
somewhat surprising. For despite the fact that the oncoming flow is not fully 
developed, since the leading-edge boundary layers have not yet merged, the 
relation between the pressure, the displacement of the core and the wall shape 
has already acquired the form characteristic of a fully developed initial velocity 
profile (Smith 1976b). 

More intriguing is the nature of the constricted or bifurcating channel flow 
when an asymmetric disturbance is sited just downstream of the adjustment 
position, so that y < I. The solution anticipates the interaction study by Smith 
(1977) ,  in that the long-scale upstream and wake effects which are propagated 
are initiated by the transverse pressure gradient acting in the main body of the 
fluid. This pressure gradient forces movement of the fluid across the channel, an 
action which tends to  accentuate the upstream growth or compression of the 
oncoming boundary layers and leads to a free interaction, both when the initial 
flow is fully developed (Smith 1977) and when it is only virtually so (4 3 above). 

Likewise, the more novel aspects of asymmetrically constricted pipe flows 
occur for y < 1, when the upstream iduence is generated over a length scale 
comparable with the indentation length (rather than over the long length scale 
that occurs in planar flow). By contrast the downstream influence persists over 
a much greater distance. The gross effects that are induced are then wholly 
three-dimensional and viscous in origin. The flow properties depend crucially on 
the ratio b as well, of course, in so far as that ratio fixes the interplay between the 
induced pressure and the displacement at the edge of the core. When b is large the 
influence of an asymmetric indentation matters most in the vicinity of the wall, 
since the core remains almost undisturbed. Also, the azimuthal pressure gradient 
is of importance only in that it determines the secondary flow. Hence the pressure- 
displacement law is quasi-two-dimensional. 

For a tube of finite relative width (b  = O( 1)) a constriction beyond adjustment 
(y < 1) induces an expansion of the boundary layer at a finite distance upstream, 
and, albeit much further downstream, vortex motion arises close to the wall. 
But when the tube is sufficiently enlarged ( b  % I) the corresponding change in 
the pressure-displacement law is such that the same size of constriction instead 
induces a vortex flow rotating in the opposite direction just downstream, although 
a somewhat similar type of vortex motionis promoted far beyond the constriction. 
Thus the primary adjustment stage, occurring a large distance O(RtZ) from 
the inlet (but before the oncoming boundary layers even start to coalesce) and 
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governing the initial switch from undeveloped to partially developed charac- 
teristics, would seem to specify one of the most vital areas for the siting of 
interior or wall disturbances. 

I n  summary, then, the effect of the position Z,, of the indentation is as follows 
(for an indentation of length comparable with the tube width, where b = O( 1)). 
If the position is upstream of the adjustment stage (so that Z,, Q 1 andp  3 1) the 
motion is effectively an inviscid perturbation of the uniform inlet stream. The 
boundary layers upstream are still so thin that they have little influence on the 
main flow properties. If the position is within the adjustment regime, however, 
the boundary layers do affect the motion and, when the indentation is moved 
still further downstream (Zo S 1 and p < l ) ,  the boundary-layer influence 
becomes almost wholly dominant. For example, in pipe flow the induced motion 
is entirely viscous upstream when p < 1, and the core displacement is negligible, 
while in a channel the core simply suffers a transverse displacement. The effect 
of indentation length when the indentation is within the adjustment zone 
(p = O( 1)) is governed by the ratio b. When the length is much greater than the 
tube width ( b  6 1) the influence of the inviscid core is correspondingly diminished 
and viscous effects dominate in similar fashion to the case p --f 0. If the indentation 
length is contracted (b  3 l ) ,  however, the local motion, though remaining viscous, 
becomes quasi-external because in a channel, for instance, the walls are then 
relatively far apart. In  a pipe the same quasi-external properties are recovered 
when b --f 00, and a three-dimensional extension of triple-deck theory emerges. 

Some work on extending the three-dimensional theory (Q 4) to fully developed 
pipe flows has now been done (Smith 1 9 7 6 ~ ) .  The extra influence of unsteadiness 
in the flow can also be dealt with to some extent, by proceeding along the lines of 
the studies of Brown & Daniels (1975) and Smith (1976b). 

The referees are thanked for pointing out some flaws in the original presenta- 
tion and analysis. 
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